Finite Mixture Models with Negative Components
نویسندگان
چکیده
Mixture models, especially mixtures of Gaussian, have been widely used due to their great flexibility and power. Non-Gaussian clusters can be approximated by several Gaussian components, however, it can not always acquire appropriate results. By cancelling the nonnegative constraint to mixture coefficients and introducing a new concept of “negative components”, we extend the traditional mixture models and enhance their performance without increasing the complexity obviously. Moreover, we propose a parameter estimation algorithm based on an iteration mechanism, which can effectively discover patterns of “negative components”. Experiments on some synthetic data testified the reasonableness of the proposed novel model and the effectiveness of the parameter estimation algorithm.
منابع مشابه
The Negative Binomial Distribution Efficiency in Finite Mixture of Semi-parametric Generalized Linear Models
Introduction Selection the appropriate statistical model for the response variable is one of the most important problem in the finite mixture of generalized linear models. One of the distributions which it has a problem in a finite mixture of semi-parametric generalized statistical models, is the Poisson distribution. In this paper, to overcome over dispersion and computational burden, finite ...
متن کاملModel Selection for Mixture Models Using Perfect Sample
We have considered a perfect sample method for model selection of finite mixture models with either known (fixed) or unknown number of components which can be applied in the most general setting with assumptions on the relation between the rival models and the true distribution. It is, both, one or neither to be well-specified or mis-specified, they may be nested or non-nested. We consider mixt...
متن کاملDetermination of the number of components in finite mixture distribution with Skew-t-Normal components
Abstract One of the main goal in the mixture distributions is to determine the number of components. There are different methods for determination the number of components, for example, Greedy-EM algorithm which is based on adding a new component to the model until satisfied the best number of components. The second method is based on maximum entropy and finally the third method is based on non...
متن کاملAn Overview of the New Feature Selection Methods in Finite Mixture of Regression Models
Variable (feature) selection has attracted much attention in contemporary statistical learning and recent scientific research. This is mainly due to the rapid advancement in modern technology that allows scientists to collect data of unprecedented size and complexity. One type of statistical problem in such applications is concerned with modeling an output variable as a function of a sma...
متن کامل